
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 
243 

 

APPLICATIONS AND COMPUTER SIMULATIONS OF  

MARKOV CHAINS 

 

Sanda Micula 1 

Rodica Sobolu 2* 

 

ABSTRACT  

In this paper we discuss Markov chains, theoretical results, applications and 

algorithms for computer simulations in MATLAB. We describe the use of Monte Carlo 

methods for estimating probabilities and other characteristics relating to Markov 

chains. The paper concludes with some interesting applications. 
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1. INTRODUCTION 

In probability theory and related fields, a Markov process (named after the Russian 

mathematician Andrey Markov), is a stochastic process that satisfies the 

“memorylessness” property, meaning that one can make predictions for the future of the 

process based solely on its present state, independently from its history. A Markov chain 

is a Markov process that has a discrete state space. Markov chains have many 

applications as statistical models of real-world problems, such as counting processes, 

queuing systems, exchange rates of currencies, storage systems, population growths and 

other applications in Bayesian Statistics. 

Monte Carlo methods are used to perform many simulations using random numbers and 

probability to get an approximation of the answer to a problem which is otherwise too 

complicated to solve analytically. Such methods use approximations which rely on “long 

run” simulations, based on computer random number generators. Monte Carlo methods 

can be used for (but are not restricted to) computation of probabilities, expected values 

and other distribution characteristics.  
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1.1. Preliminaries 

We recall a few notions from Probability Theory that will be needed later. 

Let S be the sample space of some experiment, i.e. the set of all possible outcomes of that 

experiment (called elementary events and denoted by 𝑒𝑖 ). Let P be a probability mapping 

(see [4]). 

Definition 1.1. A random variable is a function 𝑋 ∶  𝒮 ⟶ ℝ for which P (X  ≤ x) exists, 

for all x ∈ ℝ. 

If  𝑋(𝒮) ⊆ ℝ is at most countable in ℝ, then X is a discrete random variable, otherwise, 

it is a continuous random variable. 

If X is a discrete random variable, then a better way of describing it is to give its 

probability distribution function (pdf) or probability mass function  (pmf), an array 

that contains all its values 𝑥𝑖 , and the corresponding probabilities with which each value 

is taken, 𝑝𝑖 = 𝑃(𝑋 = 𝑥𝑖), 

𝑋 (
𝑥𝑖
𝑝𝑖
)
𝑖∈𝐼

                                              (1.1) 

Of the discrete probability laws, we recall two of the most widely used. 

Bernoulli distribution Bern(p), with parameter 𝑝 ∈ (0,1).This is the simplest of 

distributions, with pdf 

𝑋 (
0           1
1 − 𝑝    𝑝

).                      (1.2) 

It is used to model “success/failure” (i.e. a Bernoulli trial), since many distributions are 

described in such terms. 

Binomial distribution  𝐵(𝑛, 𝑝), with parameters 𝑛 ∈ ℕ, 𝑝 ∈ (0,1). Consider a series of n 

Bernoulli trials with probability of success p in every trial (𝑞 = 1 − 𝑝). Let X be the 

number of successes that occur in the n trials. Then X has a Binomial distribution, with 

pdf 

     𝑋 (
𝑘

𝐶𝑛
𝑘𝑝𝑘𝑞𝑛−𝑘

)
𝑘=0,𝑛̅̅̅̅̅

.                              (1.3) 

Note that a Binomial 𝐵(𝑛, 𝑝) variable is the sum of n independent 𝐵𝑒𝑟𝑛(𝑝)  variables 

and 𝐵𝑒𝑟𝑛(𝑝) =  𝐵(1, 𝑝). 

Let us also recall the notion of conditional probability and related properties. 

Definition 1.2. Let A and B be two events with 𝑃(𝐵) ≠ 0. The conditional probability of 

A, given B, is defined as 

𝑃(𝐴 |𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 . 

The next result is known as the total probability rule. 
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Proposition 1.3. Let {𝐴𝑖}𝑖∈𝐼 be a partition of 𝒮, i.e. ⋃ 𝐴𝑖 = 𝒮  (𝑖∈𝐼 {𝐴𝑖}𝑖∈𝐼 are an 

exhaustive collection of events) and 𝐴𝑖 ∩ 𝐴𝑗 = ∅, 𝑖 ≠ 𝑗  ({𝐴𝑖}𝑖∈𝐼 are mutually exclusive 

events). Let E be any event and B any event with 𝑃(𝐵) ≠ 0. Then 

𝑃(𝐸) = ∑ 𝑃(𝐴𝑖)𝑃(𝐸 |𝐴𝑖),𝑖∈𝐼    

𝑃(𝐸 |𝐵) = ∑ 𝑃(𝐴𝑖 | 𝐵)𝑃( 𝐸 | 𝐴𝑖)𝑖∈𝐼 . (1.4) 

2. STOCHASTIC PROCESSES AND MARKOV CHAINS 

Random variables describe random phenomena at a particular moment of time, but 

many variables change and evolve in time (think air temperatures, stock prices, 

currency rates, CPU usage, etc). Basically, stochastic processes are random variables that 

develop and change in time. 

Definition 2.1. A stochastic process is a random variable that also depends on time. It 

is denoted by 𝑋(𝑡, 𝑒) or 𝑋𝑡(𝑒),  where 𝑡 ∈ 𝒯 is time and 𝑒 ∈ 𝒮 is an outcome. The values 

of 𝑋(𝑡, 𝑒) are called states. 

If 𝑡 ∈ 𝒯 is fixed, then 𝑋𝑡 is a random variable, whereas if we fix 𝑒 ∈ 𝒮,  𝑋𝑒 is a function of 

time, called a realization or sample path of the process 𝑋(𝑡, 𝑒). 

Definition 2.2. A stochastic process is called discrete-state if 𝑋𝑡(𝑒) is a discrete 

random variable for all 𝑡 ∈ 𝒯 and continuous-state if 𝑋𝑡(𝑒) is a continuous random variable, 

for all 𝑡 ∈ 𝒯. 

Similarly, a stochastic process is said to be discrete-time if the set 𝒯 is discrete and 

continuous-time if the set of times 𝒯is a (possibly unbounded) interval in ℝ. 

Throughout the paper, we will omit writing e as an argument of a stochastic process (as it 

is customary when writing random variables). 

2.1. Markov Processes and Markov Chains; Transition Probability Matrix 

Definition 2.3. A stochastic process 𝑋𝑡 is Markov if for any times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 < 𝑡 
and any sets 𝐴1, 𝐴2, … , 𝐴𝑛; 𝐴, 

𝑃(𝑋𝑡  ∈ 𝐴 | 𝑋𝑡1 ∈  𝐴1, … , 𝑋𝑡𝑛 ∈ 𝐴𝑛) = 𝑃(𝑋𝑡 ∈ 𝐴 | 𝑋𝑡𝑛 ∈ 𝐴𝑛 ).            (2.1) 

What this means is that the conditional distribution of 𝑋𝑡 given observations of the 

process at several moments in the past, is the same as the one given only the latest 

observation. 

Definition 2.4. A discrete-state, discrete-time Markov stochastic process is called a 

Markov chain. 

To simplify the writing, we use the following notations: Since a Markov chain is a discrete-

time process, we can see it as a sequence of random variables {𝑋0, 𝑋1, … } where 𝑋𝑘 

describes the situation at time 𝑡 = 𝑘. It is also a discrete-state process, so we denote the 

states by 1, 2, …, n (they may start at 0 or some other value and n may possibly be ∞). 
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Then the random variable 𝑋𝑘 has the pdf 

𝑋𝑘 (
1             2      …      𝑛

  𝑃𝑘(1)     𝑃𝑘(2)   …  𝑃𝑘(𝑛)  
),                          (2.2) 

where 𝑃𝑘(1) = 𝑃(𝑋𝑘 = 1),… , 𝑃𝑘(𝑛) = 𝑃(𝑋𝑘 = 𝑛). Since the states (the values of the 

random variable 𝑋𝑘) are the same for each k, one only needs the second row to describe 

the pdf. So, let 

𝑃𝑘 = [𝑃𝑘(1)   𝑃𝑘(2) …  𝑃𝑘(𝑛)]       (2.3) 

denote the vector on the second row of (2.2). 

The Markov property (2.1) can be now written as 

           𝑃(𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖, 𝑋𝑡−1 = 𝑙,… ) = 𝑃(𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖),  for all  𝑡 ∈ 𝒯.    (2.4) 

We summarize this information in a matrix. 

Definition 2.5. 

- The conditional probability 

𝑝𝑖𝑗(𝑡) = 𝑃(𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖)                                    (2.5) 

is called a transition probability; it is the probability that the Markov chain transitions 

from state i to state j, at time t. The matrix 

𝑃(𝑡) =  [𝑝𝑖𝑗(𝑡)]𝑖,𝑗=1,𝑛̅̅̅̅̅                                             (2.6) 

is called the transition probability matrix at time t. 

- Similarly, the conditional probability 

𝑝𝑖𝑗
(ℎ)
(𝑡) =  𝑃(𝑋𝑡+ℎ = 𝑗 | 𝑋𝑡 = 𝑖)                            (2.7) 

is called h-step transition probability, i.e. the probability that the Markov chain moves 

from state i to state j, in h steps and the matrix 

𝑃(ℎ)(𝑡) = [𝑝𝑖𝑗
(ℎ)(𝑡)]

𝑖,𝑗=1,𝑛̅̅̅̅̅
                           (2.8) 

is the h-step transition probability matrix at time t. 

Definition 2.6. A Markov chain is homogeneous if all transition probabilities are 

independent of time, 

                𝑝𝑖𝑗(𝑡) =  𝑝𝑖𝑗 , 𝑃(𝑡) =  𝑃 = [𝑝𝑖𝑗]𝑖,𝑗=1,𝑛̅̅̅̅̅, 

𝑝𝑖𝑗
(ℎ)(𝑡) =  𝑝𝑖𝑗

(ℎ), 𝑃(ℎ)(𝑡) =  𝑃(ℎ) = [𝑝𝑖𝑗
(ℎ)
]
𝑖,𝑗=1,𝑛̅̅̅̅̅

. 

Throughout the rest of the paper, we will only refer to homogeneous Markov chains (even 

if not specifically stated so). 

Proposition 2.7. Let   {𝑋0, 𝑋1, … } be a Markov chain. Then the following relations hold:  

𝑃(ℎ) = 𝑃ℎ ,  for all ℎ = 1, 2, … 
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𝑃𝑖 = 𝑃0 ⋅ 𝑃
𝑖 ,  for all 𝑖 = 0, 1, …                                            (2.9) 

Proof: 

The proof of the first relation goes by induction. 

Obviously, the first relation in (2.9) is true for h = 1. Assume 𝑃(ℎ−1) = 𝑃ℎ−1. For a 

matrix M, we use the notation [𝑀]𝑖𝑗 = 𝑀(𝑖, 𝑗) and, similarly, for a vector v, (𝑣)𝑖 = 𝑣 (𝑖). 

Since the events {(𝑋ℎ−1 = 𝑘)}𝑘=1,𝑛̅̅̅̅̅  form a partition, using the total probability rule (1.4) 

for  𝑝𝑖𝑗
(ℎ)

= 𝑃(𝑋ℎ = 𝑗 |𝑋0 = 𝑖), we have 

𝑃(𝑋ℎ = 𝑗 |𝑋0 = 𝑖) =  ∑𝑃(𝑋ℎ−1 = 𝑘 | 𝑋0 = 𝑖

𝑛

𝑘=1

) ⋅ 𝑃(𝑋ℎ = 𝑗 |𝑋ℎ−1 = 𝑘) 

                                                    = ∑𝑝𝑖𝑘
(ℎ−1)

 ⋅  𝑝𝑘𝑗

𝑛

𝑘=1

 

          = [𝑃ℎ−1 ⋅ 𝑃]𝑖𝑗 for all 𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅̅, 

so 𝑃(ℎ) = 𝑃ℎ. 

To prove the second relation in (2.9), for each 𝑗 = 1, 𝑛̅̅ ̅̅̅, we have [𝑃𝑖]𝑗 = 𝑃𝑖(𝑗) =

 𝑃(𝑋𝑖 = 𝑗). Again, using (1.4) for the events {(𝑋0 = 𝑘)}𝑘=1,𝑛̅̅̅̅̅, we get 

                   𝑃(𝑋𝑖 = 𝑗) =  ∑𝑃(𝑋0 = 𝑘) ⋅ 𝑃(𝑋𝑖 = 𝑗 |𝑋0 = 𝑘)

𝑛

𝑘=1

 

=∑[𝑃0]𝑘

𝑛

𝑘=1

⋅ 𝑝𝑘𝑗
(𝑖)

 

           = [𝑃0 ∙ 𝑃
(𝑖)]

𝑗
, 

so, by the previous relation proved, 𝑃𝑖 = 𝑃0 ⋅ 𝑃
𝑖. 

Remark 2.8. We used the fact that state destinations are mutually exclusive and 

exhaustive events, thus forming a partition. That is because from each state, a Markov 

chain makes a transition to one and only one state. As a consequence, in matrices P and 

𝑃(ℎ)(= 𝑃ℎ), the sum of all the probabilities on each row is 1. Such matrices are called 

stochastic. 

2.2. Steady-State Distribution; Regular Markov Chains 

It is sometimes necessary to be able to make long-term forecasts, meaning we want 

lim
𝑛→∞

𝑃ℎ, so we need to compute lim
𝑛→∞

𝑝𝑖𝑗
(ℎ)

. 

Definition 2.9. Let X be a Markov chain. The vector 𝜋 = [𝜋1, … , 𝜋𝑛], consisting of the 

limiting probabilities 𝜋𝑘 = lim
ℎ→∞

𝑃ℎ (𝑘), 𝑘 = 1,… , 𝑛, if it exists, is called a steady-state 

distribution of X. 
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In order to find it, let us notice that  

𝑃ℎ𝑃 = (𝑃0𝑃
ℎ)𝑃 =  𝑃0𝑃

ℎ+1 = 𝑃ℎ+1. 

Taking the limit as ℎ → ∞ on both sides, we get 

𝜋𝑃 = 𝜋.                                               (2.10) 

Notice that the system (2.10) is an 𝑛 × 𝑛 singular linear system (multiplication by a 

constant on each side leads to infinitely many solutions). However, since π must also be a 

stochastic matrix, the sum of its components must equal 1. We state the following result, 

without proof. 

Proposition 2.10. The steady-state distribution of a homogeneous Markov chain X, 𝜋 =
[𝜋1, … , 𝜋𝑛], if it exists, is unique and is the solution of the (𝑛 + 1)× 𝑛 linear system 

  
(2.11) 

Remark. 2.11. 

1. When we need to make predictions after a large number of steps, instead of the lengthy 

computation of 𝑃ℎ , it may be easier to try to find the steady-state distribution, π, directly. 

2. If a steady-state distribution exists, then 𝑃(ℎ) = 𝑃ℎ also has a limiting matrix, given by 

Π = lim
ℎ→∞

𝑃(ℎ) = [
𝜋
⋮
𝜋
] =  [

𝜋1 𝜋2
⋮ ⋮
𝜋1 𝜋2

    

… 𝜋𝑛
… ⋮
… 𝜋𝑛

] . 

Notice that π and Π do not depend on the initial state 𝑋0. Actually, in the long run the 

probabilities of transitioning from any state to a given state are the same, 𝑝𝑖𝑘 =
𝑝𝑗𝑘 , ∀𝑖, 𝑗, 𝑘 =  1, 𝑛̅̅ ̅̅̅ (all the rows of Π coincide). Then, it is just a matter of “reaching” a 

certain state (from anywhere), rather than “transitioning” to it (from another state). That 

should, indeed, depend only on the pattern of changes, i.e. only on the transition 

probability matrix. 

As stated earlier, a steady-state distribution may not always exist.  We will mention 

(without proof) one case, which is really easy to check, when such a distribution does 

exist. 

Definition 2.12. A Markov chain is called regular if there exists h ≥ 0, such that 

𝑝𝑖𝑗
(ℎ) > 0, 

for all 𝑖, 𝑗 = 1,… , 𝑛. 

This is saying that at some step h, 𝑃(ℎ) has only non-zero entries, meaning that h-step 

transitions from any state to any state are possible. 

Proposition 2.13. Any regular Markov chain has a steady-state distribution. 

 

𝜋 𝑃 =  𝜋

∑𝜋𝑘 = 1.

𝑛

𝑘=1
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Remark 2.14.  

1. Regularity of Markov chains does not mean that all 𝑝𝑖𝑗
(𝑘)

 should be positive, for all h. 

The transition probability matrix P, or some of its powers, may have some 0 entries, but 

there must exist some power h, for which 𝑃(ℎ) has all non-zero entries. 

2. If there exists a state i with 𝑝𝑖𝑖 = 1, then that Markov chain cannot be regular. There is 

no exit (no transition possible) from state i. Such a state is called an absorbing state. 

3. Another example of a non-regular chain is that of a periodic Markov chain, i.e. one for 

which there exists 𝑇 > 0, such that 𝑋𝑡 = 𝑋𝑡+𝑇 , for all 𝑡 ≥ 0. Obviously, in this case, 

lim
ℎ→∞

𝑃ℎ does not exist, and neither does a steady-state distribution. 

3. COMPUTER SIMULATIONS OF MARKOV CHAINS AND MONTE 

CARLO METHODS 

Monte Carlo methods are a class of computational algorithms that can be applied to a 

vast range of problems, where computation of probabilities and other characteristics of 

interest is too complicated, resource or time consuming, or simply not feasible. They are 

based on computer simulations involving random number generators and are used to 

make predictions about  processes  involving  random variables. A computer code that 

replicates a certain phenomenon can be put in a loop, be simulated any number of 

times and, based on the outcomes, conclusions about its real life behaviour can then be 

drawn. The longer run is simulated, the more accurate the predictions are. Monte Carlo 

methods can be used for estimation of probabilities, other distribution characteristics, 

lengths, areas, integrals, etc. 

Many important characteristics of stochastic processes require lengthy complex 

computations. Thus, it is preferable to estimate them by means of Monte Carlo methods. 

For Markov chains, to predict its future behaviour, all that is required is the distribution 

of 𝑋0, i.e. 𝑃0 (the initial situation) and the pattern of change at each step, i.e. the 

transition probability matrix P. 

Once 𝑋0 is generated, it takes some value 𝑋0 = 𝑖  (according to its pdf 𝑃0). Then, at the 

next step, 𝑋1  is a discrete random variable taking the values 𝑗, 𝑗 = 1,… , 𝑛 with 

probabilities 𝑝𝑖𝑗 from row i of the matrix P. Its pdf will be 

𝑋1 (
1      2    …       𝑛
𝑝𝑖1      𝑝𝑖2  …     𝑝𝑖𝑛

). 

The next steps are simulated similarly. 

Since, at each step, the generation of a discrete random variable is needed, we can use any 

algorithm that simulates an arbitrary discrete distribution. Let 

𝑋 (
𝑥𝑖
𝑝𝑖
)
𝑖∈𝐼

 

be any discrete random variable. We use the following simple algorithm (see [4]). 
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Algorithm 3.1. 

1. Divide the interval [0,1] into the subintervals {𝐴𝑖}𝑖∈𝐼 as follows: 

                                                     𝐴0 = [0, 𝑝0) 

𝐴1 = [𝑝0, 𝑝0 + 𝑝1)  

⋮ 

𝐴𝑖 = [𝑝0 +⋯+ 𝑝𝑖−1, 𝑝0 +⋯+ 𝑝𝑖−1 + 𝑝𝑖) 

⋮ 

2. Let 𝑈 ∈ 𝒰(0,1) be a Standard Uniform random variable. 

3. If 𝑈 ∈ 𝐴𝑖, let 𝑋 =  𝑥𝑖 . 

Indeed, then X takes the values 𝑥𝑖 and 𝑃(𝑋 =  𝑥𝑖) =  length(𝐴𝑖) =  𝑝𝑖. We put Algorithm 

3.1 in a loop to generate a Markov chain. 

Algorithm 3.2. 

1. Given: 

𝑁𝑀 = sample path size (length of Markov chain), 

𝑃0 = [𝑃0(1)… 𝑃0(𝑛)], 

𝑃 = [𝑝𝑖𝑗]𝑖,𝑗=1,𝑛̅̅̅̅̅. 

2. Generate 𝑋0 from its pdf 𝑃0. 

3. Transition: if 𝑋𝑡 = 𝑖, generate 𝑋𝑡+1, with 𝑝𝑖𝑗 , 𝑗 = 1, 𝑛̅̅ ̅̅̅, using Algorithm 3.1. 

4. Return to step 3 until a Markov chain of length 𝑁𝑀 is generated. 

4. APPLICATIONS 

Let us consider the following example: 

An encrypting program generates sequences of letters, such that a vowel is followed by 

a consonant with probability 0.3, while a consonant is followed by a vowel with 

probability 0.4. 

(1) If the first character is a consonant, make predictions for the second and third 

character. 

This stochastic process, say X, has two states, 1 =“vowel” and 2 =“consonant”, so it is 

discrete-state. The time set consists of the position of each character in the sequence, so X 

is also discrete-time. Since the prognosis of each character depends only on the previous 

one, it is a Markov process and, hence, a Markov chain. Finally, the probability of 

transitioning from a vowel or from a consonant at any position in the sequence, is the 

same, hence, X is a homogeneous Markov chain.  

The initial situation (first character) is 
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𝑋0  (
1  2
0  1

),  𝑃0 = [0,1]. 

The transition probability matrix is  

𝑃 = [
𝑝11 𝑝12
𝑝21 𝑝22

] = [
0.7 0.3
0.4 0.6

]. 

For the second character, at 𝑡 = 1, the pdf will be 

𝑃1 = 𝑃0  ⋅ 𝑃 = [0  1] [
0.7 0.3
0.4 0.6

] = [0.4  0.6]. 

So, the second character has 40% chance of being a vowel and 60% chance of being a 

consonant. For the third character, the pdf is 

𝑃2 = 𝑃0  ⋅  𝑃
2 = [0  1] [

0.61 0.39
0.52 0.48

] = [0.52   0.48]. 

The third character is a vowel with probability 0.52 and a consonant with probability 0.48. 

(2) Suppose now that the first character is a consonant with probability 0.8. What is 

the prognosis for the third and the 100th character? 

In this case, P is the same, but 𝑋0 (i.e. 𝑃0) changes. 

𝑃0 = [0.2  0.8] 

and 

𝑃2 = 𝑃0  ⋅  𝑃
2 = [0.538  0.462]. 

The 100th character is many steps away, so instead of computing 𝑃100, we find the steady-

state distribution. Notice that P has all nonzero entries, so the Markov chain is regular, 

which means a steady-state distribution does exist. We find it by solving the system (2.11), 

i.e, 

 

0.7 𝜋1 + 0.4 𝜋2 = 𝜋1
0.3 𝜋1 + 0.6 𝜋2 = 𝜋2
     𝜋1  +       𝜋2 = 1

 

 , 

with solution 𝜋1 = 0.5714 and 𝜋2 = 0.4286. So, in the “long run ”, the pdf of the 

situation is 

lim
ℎ→∞

𝑃ℎ =  𝜋 =  [𝜋1  𝜋2] = [0.5714  0.4286], 

i.e., about 57% of the characters are vowels and around 43% are consonants. 

(3) It was found that if more than 15 vowels or more than 12 consonants are 

generated in a row, in a sequence of 100 characters, then the code becomes 

vulnerable to cracking. Assuming that the first character is a consonant with 

probability 0.8, conduct a Monte Carlo study for estimating the probability of the 

code becoming vulnerable. 

We use Algorithm 3.2 to generate a sample path of length 100, for a large number of 

simulations. The MATLAB code is given below. 
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% Simulate Markov chain. 

clear all 

Nm = input(‘ length of sample path = ‘); 

N = input(‘ nr. of simulations = ‘) 

For j = 1 : N 

p = [0.2 0.8]; % initial distr. of vowels/consonants 

P = [0.7 0.3; 0.4 0.6]; %trans. prob. matrix 

prob(1, :) = p; 

for t = 1 : Nm 

    U = rand; 

    X(t)=1*(U<p(1))+2*(U>=p(1)); 

% simulate X(1), … , X(Nm)as Bernoulli variables 

   prob(t+1, :) = prob(t, :)*P; 

   p = P(X(t), :); % prepare the distribution for X(t+1); 

                   % its pdf is the (X(t))th row of matrix P 

end 

 

i_change = [find(X(1:end-1)~=X(2:end)), Nm]; 

% find all indices where X changes states 

longstr(1) = 1; % find a vector containing the long streak 

                % of consecutive vowels/consonants 

if (i_change(1) ~=1) 

% if X does not change state at step 1, the first long streak 

begins at the first change of states 

 longstr(1) = i_change(1); 

end 

 

for i = 2 : length(i_change) 

 longstr(i) = i_change(i) – i_change(i-1); 

% find all streaks 

end 

 

if(X(1)==1) 

vowel = longstr(1:2:end); % find the long streaks of vowels 

conson = longstr(2:2:end); % find the long streaks of the consonants 

else 

 vowel = longstr(2:2:end); 

 conson = longstr(1:2:end); 

end 

 

maxv(j) = max(vowel); % longest streak of vowels 

maxc(j) = max(conson); % longest streak of consonants 

end 

 

fprintf(‘probability of more than 15 vowels in a row is 

         %1.4f\n’, mean(maxv>15)) 

fprintf(‘probability of more than 12 consonants in a row is  

         %1.4f\n’, mean(maxc>12)) 

 

After running this code several times, for a sample path of length 100 and for a number of 

104 and 105 simulations, it was found that the probability of having more than 12 vowels 
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in a row is approximately 0.07, whereas the chance of getting more than 12 consonants 

in a row is around 0.04. Based on these results, the encrypting technique can be properly 

adjusted. 

REFERENCES 

[1]  C. Andrieu, A. Doucet, R. Holenstein, Particle Markov chain Monte Carlo       

methods, J. Royal. Statist. Soc. B. Vol. 72(3), 2010, 269–342. 

[2]  M. Baron, Probability and Statistics for Computer Scientists, 2nd Edition, CRC 

Press, Taylor & Francis, Boca Raton, FL, USA, 2014. 

[3]  L. Gurvits, J. Ledoux, Markov property for a function of a Markov chain: A linear 

algebra approach, Linear Algebra and its Applications, Vol. 404, 2005, 85–117. 

[4]  D. V. Khmelev, F. J. Tweedie, Using Markov Chains for Identification of Writers, 

Literary and Linguistic Computing, Vol. 16(4), 2001, 299–307. 

[5]  T. Liu, Application of Markov Chains to Analyse and Predict the Time Series, 

Modern Applied Science, Vol. 4(5), 2010, 161–166. 

[6]  S. Micula, Probability and Statistics for Computational Sciences, Cluj University 

Press, 2009. 

[7]  S. Micula, Statistical Computer Simulations and Monte Carlo Methods, J. of 

Information Systems and Operations Management, Vol. 9(2), 2015, 384–394. 

[8]  J. S. Milton, J. C. Arnold, Introduction to Probability and Statistics: Principles and 

Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-

Hill, New York, 1995. 

[9]  J. Pan, A. Nagurney, Using Markov chains to model human migration in a 

network equilibrium framework, Mathematical and Computer Modelling, Vol. 

19(11), 1994, 31–39. 

[10]  http://www.mathworks.com/help/matlab/, 2017. 

 

 

http://www.mathworks.com/help/matlab/

